7. Aircraft Technology and Its Relation to Emissions
Executive Summary
7.1. Introduction
7.2. Aircraft Characteristics
7.2.1. Aircraft Design: Background
7.2.2. Aircraft Historical and Future Developments
7.2.3. Time Scales from Technology Development to End
of Service Life
7.2.4. Summary of Aircraft Fuel-Efficiency Improvements
7.3. Airframe Performance and Technology
7.3.1. Aerodynamic Improvement
7.3.2. Airframe Weight Reduction
7.3.3. Nacelle Efficiency
7.3.4. Propulsion/Airframe Integration (PAI)
7.3.5. Control Systems
7.3.6. Operational Efficiencies by Design
7.3.7. Advanced Future Technologies
7.3.7.1. Laminar Flow Concepts
7.3.7.2. Other Aerodynamic Improvements
7.3.7.3. Weight Reduction
7.3.7.4. Aircraft Systems
7.3.7.5. Advanced Airframe Concepts
7.4. Engine Performance and Technology
7.4.1. Fundamental Thermodynamics
7.4.1.1. Thermal Efficiency
7.4.1.2. Propulsive and Overall Efficiency
7.4.2. Historical Trends
7.4.3. Future Development Paths for Aircraft Engines
7.5. Combustion Technology
7.5.1. Introduction
7.5.2. Gas Turbine Combustion System
7.5.2.1. Combustor Features and Requirements
7.5.3. Production of Engine Emissions
7.5.4. Reduction of Emissions
7.5.4.1. Earlier Developments
7.5.4.2. Near-Term Technology
7.5.4.2.1. General issues
7.5.4.2.2. Combustor design considerations
7.5.4.2.3. Achievements
7.5.4.3. Longer-Term Technology
7.5.5. Future Technology Scenarios
7.5.6. Summary of Key Points Relating to Combustion Technology
7.6. Turbine and Nozzle Effects on Emissions
7.6.1. Chemical Processes in Turbine and Exhaust Nozzle
7.6.2. Aircraft Turbine and Nozzle Design
7.6.3. Chemical and Fluid Mechanical Effects
7.6.4. Current Understanding of Chemical Changes in Turbine
and Exhaust Nozzle
7.6.4.1. Primary Exhaust Constituents (H2O,
CO2, N2, O2)
7.6.4.2. Secondary Combustion Products (NO, NO2,
N2O, SO2, CO,
stable HC)
7.6.4.3. Oxidation Products of Secondary Combustion Species
(HNO2, HNO3,
SO3, H2SO4,
H2O2, HNO)
7.6.4.4. Reactive Species (O, OH, HO2,
SO, H2, H, N, CH)
7.7. Engine Emissions Database and Correlation
7.7.1. ICAO Engine Standards and Emission Database
7.7.2. Engine Load and Emission Correlation
7.7.2.1. Emission Correlation Methods
7.7.2.2. Simplified Alternate Correlation Methods
7.7.3. Validation of Emission Prediction Methods
7.7.3.1. Altitude Chamber Testing
7.7.3.2. Validation by In-Flight Measurement
7.7.4. Engine Emission Variations
7.8. Aviation Fuels
7.8.1. Databases on Fuel Properties
7.8.2. Fuel Composition Effects on Emissions
7.8.3. Historical Trends and Forecasts for Sulfur Content
7.8.4. Alternative Fuels to Kerosene
7.8.5. Summary
7.9. Small Aircraft, Engines, and APUs
7.9.1. Airframe Technology
7.9.2. Aircraft Weight Reduction
7.9.3. Engine Performance
7.9.4. Engine Database
7.9.5. Combustor Technology
7.9.5.1. Historical Developments and Current Status
7.9.5.2. Unique Combustors for Small Engines
7.9.5.3. Current and Future Trends
7.10. Supersonic Transport Aircraft
7.10.1. Supersonic Transport Characteristics
7.10.2. Propulsion System Efficiency
7.10.3. Supersonic Propulsion System Characteristics
7.10.4. Supersonic Transport Propulsion NOx
Output
7.10.5. Other Contaminants from Supersonic Transport Engines
7.10.6. Supersonic Transport Operations
7.10.7. Mitigation
7.11. Special Military Considerations
7.11.1. Differences Resulting from Operational and Design
Features
7.11.1.1. Combat Aircraft
7.11.1.2. Military Transport
7.11.2. Conclusion
References
JERRY S. LEWIS AND RICHARD W. NIEDZWIECKI
Lead Authors:
D.W. Bahr, S. Bullock, N. Cumpsty, W. Dodds, D. DuBois, A. Epstein, W.W.
Ferguson, A. Fiorentino, A.A. Gorbatko, D.E. Hagen, P.J. Hart, S. Hayashi, J.B.
Jamieson, J. Kerrebrock, M. Lecht, B. Lowrie, R.C. Miake-Lye, A.K. Mortlock,
C. Moses, K. Renger, S. Sampath, J. Sanborn, B. Simon, A. Sorokin, W. Taylor,
I. Waitz, C.C. Wey, P. Whitefield, C. W. Wilson, S. Wu
Contributors:
S.L. Baughcum, A. Döpelheuer, H.J. Hackstein, H. Mongia, R.R. Nichols, C.
Osonitsch, J. Paladino, M.K. Razdan, M. Roquemore, P.A. Schulte, D.J. Sutkus
Review Editor: M. Wright
|