IPCC Fourth Assessment Report: Climate Change 2007
Informe de síntesis

4.3 Opciones de mitigación

Diversos estudios[21], tanto de planteamiento ascendente como descendente, indican que hay un alto nivel de coincidencia y abundante evidencia de que hay un potencial económico[21] sustancial de mitigación de las emisiones de GEI mundiales en los próximos decenios, que podrían compensar el crecimiento proyectado de las emisiones mundiales o reducir las emisiones por debajo de los niveles actuales. {GTIII 11.3, RRP}

En la Figura 4.1 se compara el potencial de mitigación económico mundial en 2030 con el aumento proyectado de las emisiones entre 2000 y 2030. Estudios de planteamiento ascendente parecen indicar que hay oportunidades de mitigación de costo negativo neto[22] que podrían reducir las emisiones en aproximadamente 6 GtCO2-eq/año de aquí a 2030. Para ello, sería necesario hacer frente a los obstáculos prácticos. El potencial de mitigación económico, que suele ser más alto que el potencial de mitigación de mercado, solo puede materializarse implantando políticas adecuadas y eliminando los obstáculos.[21] {GTIII 11.3, RRP}

Comparación entre el potencial de mitigación económico mundial y el aumento de las emisiones proyectado para 2030

Figura 4.1

Figura 4.1. Potencial de mitigación económico mundial en 2030 estimado sobre la base de estudios de planteamiento ascendente (gráfica a) y descendente (gráfica b), comparado con los aumentos de emisiones proyectados para escenarios IEEE respecto de las emisiones de GEI en 2000, cifradas en 40,8 GtCO2-eq (gráfica c). Nota: las emisiones de GEI correspondientes al año 2000 excluyen las emisiones por descomposición de la biomasa que permanece en el suelo tras la tala y deforestación, y de los incendios de turba y suelos de turba drenados, a fin de mantener la concordancia con los resultados de las emisiones IEEE. {GTIII Figuras RRP.4, RRP.5a, RRP.5b}

En la Figura 4.2 se representan varias estimaciones sectoriales del potencial de mitigación económico y de los costos marginales obtenidos de estudios de planteamiento ascendente, corregidos para eliminar la contabilización por duplicado del potencial de mitigación. Aunque los estudios de planteamiento descendente y los de planteamiento ascendente concuerdan a nivel mundial, hay considerables diferencias a nivel sectorial. {GTIII 11.3, RRP}

Potenciales de mitigación económicos por sectores en 2030, estimados con base en estudios de planteamiento ascendente

Figura 4.2

Figura 4.2. Potencial de mitigación económico estimado por sectores y por regiones utilizando tecnologías y prácticas previsiblemente disponibles en 2030. Los potenciales no incluyen opciones no técnicas, como el cambio de los modos de vida. {GTIII Figura RRP.6}

Notas:

a) Los intervalos de valores del potencial económico mundial evaluados para cada sector están representados mediante líneas verticales. Los tramos están basados en asignaciones de uso final de las emisiones; en otras palabras, las emisiones derivadas del uso de la electricidad se contabilizan en los sectores de uso final, y no en el sector del suministro de energía.

b) Los potenciales estimados están limitados por los estudios disponibles, particularmente cuando los precios por carbono son altos.

c) Sectores basados en niveles de referencia diferentes. Para el sector industrial se adoptó el escenario de referencia B2 del IEEE, y para los de suministro de energía y transporte, los valores de World Energy Outlook (WEO) 2004; el sector de la construcción está basado en un escenario de referencia comprendido entre B2 y A1B (IEEE); con respecto a los desechos, se utilizaron las fuerzas originantes de A1B (IEEE) para construir un elemento de referencia específico; en agricultura y silvicultura se han utilizado niveles de referencia basados principalmente en las fuerzas originantes de B2.

d) Se indican únicamente los totales mundiales respecto del transporte, ya que se ha incluido la aviación internacional.

e) Las categorías excluidas son: emisiones distintas de CO2 en edificios y transportes, parte de las opciones de eficiencia de materiales, producción de calor y cogeneración en el suministro de energía, vehículos pesados, transporte de mercancías y pasajeros de gran cabida, la mayoría de las opciones de alto costo respecto de los edificios, tratamiento de aguas de desecho, reducción de emisiones de las minas de carbón y gasoductos, y gases fluorados procedentes del suministro y transporte de energía. El nivel de subestimación del potencial económico total asociado a estas emisiones es del orden de entre 10% y 15%.

No existe una única tecnología que pueda proporcionar todo el potencial de mitigación en ninguno de los sectores. En la Tabla 4.2 se enumeran algunos ejemplos de tecnologías clave, políticas, limitaciones y oportunidades, por sectores. {GTIII RRP}

Tabla 4.2 Ejemplos escogidos de las principales tecnologías, políticas y medidas de mitigación sectoriales; limitaciones y oportunidades. {GTIII Tablas RRP.3, RRP.7}

Sector Tecnologías y prácticas de mitigación clave comercialmente disponibles. Las tecnologías y prácticas de mitigación clave que se comercializarían antes de 2030 se indican en cursiva. Políticas, medidas e instrumentos probadamente efectivos para el medio ambiente Limitaciones y oportunidades clave (fuente normal = limitaciones; cursiva = oportunidades) 
Suministro de energía {GTIII 4.3, 4.4} Mejora de la eficiencia del suministro y de la distribución; reemplazo de carbón por gas; energía nuclear; calor y energía eléctrica renovables (energía hidroeléctrica, eólica, solar, geotérmica y bioenergía); utilización combinada de calor y de energía eléctrica; primeras aplicaciones de captación y almacenamiento de dióxido de carbono (CAD) (por ejemplo, almacenamiento de CO2 detraído del gas natural); CAD para instalaciones de generación eléctrica a partir de gas, biomasas y carbono; energía nuclear avanzada; energía renovable avanzada, incluidas las energías de las mareas y de las olas, la concentración de la energía solar y la energía fotovoltaica solar. Reducción de subvenciones a combustibles de origen fósil; impuestos o gravámenes sobre el carbono para los combustibles de origen fósil. La resistencia opuesta por intereses creados puede dificultar su aplicación. 
Tarifa de alimentación para las tecnologías de energía renovable; obligaciones de energía renovable; subvenciones al productor. Puede ser apropiado para crear mercados de tecnología de bajo nivel de emisiones. 
Transporte {GTIII 5.4} Vehículos con mayor eficiencia de combustible; vehículos híbridos; vehículos diesel más limpios; biocombustibles; sustitución del transporte por carretera por el ferrocarril y el transporte público; transporte no motorizado (en bicicleta, caminando); planificación del uso de la tierra y del transporte; biocombustible de segunda generación; aeronaves de mayor eficiencia; vehículos eléctricos y vehículos híbridos avanzados con baterías más potentes y fiables. Economización de combustible obligatoria; mezcla de biocombustible y normas de CO2 para el transporte diario. La cobertura parcial de las flotas de vehículos puede limitar l a eficacia. 
Impuestos sobre la compra, registro, utilización y combustible de los vehículos; fijación de precios de carreteras y aparcamientos. La eficacia puede disminuir con el aumento de los ingresos. 
Influencia sobre las necesidades de movilidad mediante reglamentaciones del uso de la tierra y planificación de infraestructuras; inversión en instalaciones de transporte público atrayentes y en modalidades de transporte no motorizado. Particularmente apropiado para países que están estableciendo sus sistemas de transporte. 
Edificios {GTIII 6.5} Iluminación eficiente y con luz natural; electrodomésticos y aparatos de calefacción y refrigeración más eficientes; mejora de los hornillos de cocina, mejora de aislamientos; diseño solar pasivo y activo para calefacción y refrigeración; fluidos de refrigeración alternativos, recuperación y reciclado de gases fluorados; diseño integrado de edificios comerciales, por ejemplo con tecnologías provistas de sensores inteligentes de realimentación y control; energía fotovoltaica solar integrada en edificios Normas y etiquetado de aparatos eléctricos. Necesidad de revisión periódica de las normas. 
Ordenanzas y certificación de edificios. Atractivo para nuevos edificios. Su cumplimiento puede ser difícil. 
Programas de gestión orientada a la demanda. Necesidad de reglamentaciones para que se beneficien los servicios públicos básicos. 
Programas de liderazgo del sector público, y en particular compras. Las compras estatales pueden aumentar la demanda de productos de utilización eficiente de la energía. 
Incentivos a las compañias de servicio energético (CSE). Factor de éxito: acceso a financiación de terceros. 
Industria {GTIII 7.5} Mayor eficacia de los equipos eléctricos de uso final; recuperación de calor y energía eléctrica; reciclado y sustitución de materiales; control de emisiones de gases distintos del CO2; y toda una serie de tecnologías para procesos específicos; eficiencia energética avanzada; CAD para la fabricación de cemento, amoniaco y hierro; electrodos inertes para la fabricación de aluminio. Suministro de información sobre valores de referencia; normas de funcionamiento; subvenciones; créditos fiscales. Podría ser apropiado para estimular la incorporación de tecnología. La estabilidad de las políticas nacionales es importante, atendiendo a la competitividad internacional. 
Permisos negociables. Mecanismos de asignación predecibles y señales de precios estables, importantes para las inversiones. 
Acuerdos voluntarios. Algunos factores de éxito: claridad de objetivos, un escenario de referencia, participación de terceros en el diseño y revisión y disposiciones de monitoreo explícitas, estrecha cooperación entre gobiernos e industria. 
Agricultura {GTIII 8.4} Mejora de la gestión de los cultivos y de las tierras de pastoreo para mejorar el almacenamiento de carbono en el suelo; restauración de suelos de turbera cultivados y de tierras degradadas; mejora de las técnicas de cultivo de arroz y de la gestión del ganado y del estiércol para reducir las emisiones de CH4; mejora de las técnicas de aplicación de fertilizantes nitrogenados para reducir las emisiones de N2O; cultivos de energía específicos para sustituir la utilización de combustibles de origen fósil; mejora de la eficiencia energética; mejora del rendimiento de los cultivos. Incentivos financieros y reglamentaciones para mejorar la gestión de la tierra; mantenimiento del contenido de carbono de los suelos; utilización eficiente de fertilizantes y de riegos. Puede alentar la sinergia con el desarrollo sostenible y con la reducción de la vulnerabilidad al cambio climático, venciendo con ello los obstáculos a la aplicación. 
Silvicultura/bosques {GTIII 9.4} Forestación; reforestación; gestión de bosques; disminución de la deforestación; gestión de los productos de madera recolectada; utilización de productos forestales para obtener bioenergía en sustitución de combustibles de origen fósil; mejora de especies arbóreas para incrementar la productividad de biomasa y el secuestro de carbono; mejora de las tecnologías de teledetección para el análisis de la vegetación y del potencial de secuestro de carbono del suelo, y cartografía de los cambios de uso de la tierra. Incentivos financieros (nacionales e internacionales) para incrementar la extensión de bosques, para reducir la deforestación y para mantener y gestionar los bosques; reglamentación del uso de la tierra, y observancia. Son factores limitadores la falta de capital de inversión y los problemas de tenencia de la tierra. Puede ayudar a aminorar la pobreza. 
Desechos {GTIII 10.4} Recuperación de CH4 en vertederos; incineración de desechos con recuperación de energía; compostado de desechos orgánicos; tratamiento controlado de las aguas de desecho; reciclado y reducción al mínimo de desechos; biocubiertas y biofiltros para optimizar la oxidación del CH4Incentivos financieros para mejorar la gestión de desechos y de aguas de desecho. Puede estimular la difusión de tecnologías. 
Incentivos u obligaciones con respecto a la energía renovable. Disponibilidad local de combustibles de bajo costo. 
Reglamentaciones de gestión de desechos. Aplicación óptima a nivel nacional con estrategias para su cumplimiento. 

Las decisiones futuras de inversión en infraestructura energética, que previsiblemente totalizarán más de USD 20 billones[23] entre 2005 y 2030, tendrán un impacto duradero sobre las emisiones de GEI, debido a los largos períodos de vida de las centrales de energía y de otros tipos de capital de infraestructura. La difusión de las tecnologías de bajo contenido de carbono podría alargarse durante muchos decenios, aun cuando una pronta inversión en esas tecnologías resultase atractiva. Las estimaciones iniciales indican que para retornar, de aquí a 2030, a los niveles mundiales de 2005 de emisión de CO2 en el sector energético sería necesario modificar sustancialmente las pautas de inversión, aunque la inversión adicional neta necesaria podría ser casi nula y no excedería de entre un 5% y un 10%. {GTIII 4.1, 4.4, 11.6, RRP}

Aunque los estudios aplican metodologías diferentes, hay un alto nivel de coincidencia y abundante evidencia de que, en todas las regiones del mundo analizadas, los cobeneficios que reportaría una reducción de la polución del aire mediante iniciativas de reducción de las emisiones de GEI podrían ser, a corto plazo, sustanciales, y compensarían una fracción sustancial de los costos de mitigación. {GTIII 11.8, RRP}

La eficiencia energética y la utilización de energías renovables ofrecen sinergias con el desarrollo sostenible. En los países menos adelantados, la sustitución de energías puede reducir la mortalidad y la morbilidad atenuando la polución del aire en recintos cerrados, y reduciendo el volumen de trabajo de mujeres y niños, el consumo insostenible de leña y la consiguiente deforestación. {GTIII 11.8, 11.9, 12.4}

Los artículos científicos publicados desde el TIE confirman con un alto nivel de coincidencia y un nivel de evidencia medio que las iniciativas de los países del Anexo I podrían tener efectos sobre la economía mundial y sobre las emisiones mundiales, aunque la escala de las fugas de carbono sigue siendo incierta. {GTIII 11.7, RRP}

Las naciones exportadoras de combustibles de origen fósil (tanto para los países incluidos como para los no incluidos en el Anexo I) pueden esperar, como se indicaba en el TIE, una disminución de la demanda y de los precios y un menor crecimiento del PIB por efecto de las políticas de mitigación. El alcance de ese efecto de rebose dependerá en gran medida de los supuestos en que se basen las decisiones de políticas y de las condiciones del mercado petrolero. {GTIII 11.7, RRP}

La evaluación de las fugas de carbono sigue adoleciendo de incertidumbres críticas. La mayoría de los modelos de equilibrio respaldan la conclusión del TIE de que, en el conjunto de la economía, las fugas resultantes de las iniciativas de Kyoto serán del orden de entre un 5% y un 20%, y serían menores si se difundieran eficazmente tecnologías competitivas de bajos niveles de emisión. {GTIII 11.7, RRP}

Hay también un alto nivel de coincidencia y un nivel medio de evidencia de que los cambios de las formas de vida y de las pautas de comportamiento pueden contribuir a la mitigación del cambio climático en todos los sectores. Las prácticas de gestión pueden desempeñar también un papel positivo. {GTIII RRP}

Pueden ejercer un impacto positivo sobre la mitigación, por ejemplo, los cambios de las pautas de consumo, la enseñanza y la formación profesional, los cambios de comportamiento de los ocupantes de los edificios, la gestión de la demanda de transporte, o las herramientas de gestión utilizadas por la industria. {GTIII 4.1, 5.1, 6.7, 7.3, RRP}

Una política que estableciera un precio real o implícito del carbono podría crear incentivos para los productores y consumidores, a fin de canalizar inversiones hacia los productos, tecnologías y procesos de bajo contenido de GEI. {GTIII RRP}

Una señal de precios de carbono eficaz podría conseguir un importante potencial de mitigación en todos los sectores. Estudios de modelización indican que un aumento de los precios por carbono mundiales hasta los USD20-80/tCO2-eq de aquí a 2030 sería coherente con un nivel de estabilización en torno a 550 ppm de CO2-eq de aquí a 2100. Para ese mismo nivel de estabilización, estudios posteriores al TIE que incorporan el cambio tecnológico inducido podrían rebajar esos precios hasta los USD565/tCO2-eq en 2030.[24] {GTIII 3.3, 11.4, 11.5, RRP}

Hay un alto nivel de coincidencia y abundante evidencia de que los gobiernos disponen de un amplio abanico de políticas e instrumentos de alcance nacional para incentivar la adopción de medidas de mitigación. Su aplicabilidad dependerá de las circunstancias en el país y del grado de conocimiento de sus interacciones, pero la experiencia práctica adquirida en varios países y sectores indica que habrá ventajas y desventajas sea cual sea el instrumento. {GTIII 13.2, RRP}

Para evaluar las políticas e instrumentos se aplican cuatro grandes criterios: eficacia medioambiental, eficacia en términos de costo, efectos distribucionales (en particular, equidad), y viabilidad institucional. {GTIII 13.2, RRP}

Conclusiones generales sobre la operancia de las políticas: {GTIII 13.2, RRP}

  • la integración de las políticas climáticas en políticas de desarrollo más amplias facilita su puesta en práctica y la eliminación de obstáculos;
  • las reglamentaciones y normas suelen aportar un cierto grado de certidumbre acerca de los niveles de emisión. Podrían ser preferibles a otros instrumentos cuando la información u otros obstáculos impiden a productores y consumidores responder a las señales de precios. Sin embargo, no traen consigo necesariamente innovaciones o tecnologías más avanzadas;
  • los impuestos y gravámenes pueden determinar un precio para el carbono, pero no pueden garantizar un nivel de emisiones dado. En los artículos publicados, están considerados como un medio eficaz de internalizar los costos de las emisiones de GEI;
  • los permisos negociables establecerán un precio por carbono. El volumen de emisiones permitidas determina su eficacia medioambiental, mientras que la asignación de permisos tiene consecuencias en cuanto a su distribución. La fluctuación del precio del carbono hace difícil estimar el costo total que conllevarían los permisos de emisión;
  • los incentivos financieros (subvenciones y créditos fiscales) son medios frecuentemente utilizados por los gobiernos para estimular el desarrollo y difusión de nuevas tecnologías. Aunque su costo económico suele ser más alto que el de los instrumentos anteriormente mencionados, son a menudo decisivos para superar obstáculos;
  • los acuerdos voluntarios entre la industria y los gobiernos son políticamente atractivos, conciencian a las partes interesadas, y han desempeñado un papel en la evolución de numerosas políticas nacionales. La mayoría de los acuerdos no han conseguido reducciones importantes de las emisiones por encima de los valores habituales. Sin embargo, ciertos acuerdos recientemente concertados en varios países han acelerado la aplicación de las mejores tecnologías disponibles y han conseguido reducciones medibles de las emisiones;
  • los instrumentos de información (por ejemplo, las campañas de sensibilización) pueden afectar positivamente a la calidad del medio ambiente, ya que ayudan a escoger con conocimiento de causa y, posiblemente, contribuyen a los cambios de comportamiento. Sin embargo, no se ha cuantificado todavía su impacto sobre las emisiones;
  • la investigación, el desarrollo y la demostración (I+D+D) pueden estimular los avances tecnológicos, reducir costos y favorecer el avance hacia la estabilización;

Ciertas corporaciones, autoridades locales y regionales, ONG y asociaciones civiles están adoptando acciones voluntarias de muy diversa índole. Estas acciones podrían limitar las emisiones de GEI, estimular políticas innovadoras y alentar la implantación de nuevas tecnologías. Por sí solas, suelen tener un efecto limitado sobre las emisiones a nivel nacional o regional. {GTIII 13.4, RRP}

  1. ^  El concepto de “potencial de mitigación” ha sido desarrollado para evaluar la escala de reducciones de GEI que podría conseguirse, respecto de los niveles de referencia de emisión, para un nivel dado de precio por carbono (expresado en el costo unitario de las emisiones de dióxido de carbono-equivalente evitadas o reducidas). El potencial de mitigación se clasifica en “potencial de mitigación del mercado” y “potencial de mitigación económico”.
  2. ^  Los costos negativos netos (oportunidades de políticas sin perjuicio) se definen como las opciones cuyos beneficios, como la reducción de costos de energía o la reducción de emisiones de poluyentes locales/regionales, son iguales o superiores a sus costos para la sociedad, excluyendo los beneficios que reportaría la evitación del cambio climático.
  3. ^  20 billones = 20×1012
  4. ^  Los estudios sobre carteras de mitigación y costos macroeconómicos evaluados en el presente informe están basados en modelos de estructura descendente. La mayoría de los modelos utilizan una metodología mundial de costo mínimo con respecto a las carteras de mitigación, con un comercio de emisiones universal, presuponiendo un mercado transparente, ausencia de costos de transacción y, por consiguiente, una aplicación perfecta de medidas de mitigación durante el siglo XXI. Los costos se indican para una fecha específica. Los costos obtenidos de modelos mundiales aumentarán si se excluyen ciertas regiones, sectores (por ejemplo, el uso de la tierra), opciones o gases. Disminuirán, en cambio, si los niveles de referencia son más bajos, si se utilizan ingresos procedentes de impuestos sobre el carbono y de permisos subastados, o si se incluye el aprendizaje tecnológico. Estos modelos no contemplan los beneficios climáticos ni, generalmente, los cobeneficios de las medidas de mitigación u otros aspectos relacionados con el capital en acciones. Se ha avanzado mucho en la aplicación de metodologías basadas en el cambio tecnológico inducido a los estudios de estabilización; no obstante, subsisten problemas conceptuales. En los modelos que contemplan el cambio tecnológico inducido, los costos proyectados para un nivel de estabilización dado son inferiores; las reducciones son mayores para un nivel de estabilización inferior.