IPCC Fourth Assessment Report: Climate Change 2007
Informe de síntesis

5. La perspectiva a largo plazo

La determinación de lo que se entiende por “interferencia antropógena peligrosa con el sistema climático” en relación con el Artículo 2 de la CMCC implica juicios de valor. La ciencia, a ese respecto, puede ayudar a adoptar decisiones con conocimiento de causa, en particular proporcionando criterios para decidir cuáles serán las vulnerabilidades que se podrían considerar “clave”. {Recuadro “Vulnerabilidades clave y Artículo 2 de la CMCC”, Tema 5}

Las vulnerabilidades clave[19] pueden estar asociadas a gran número de sistemas climáticos sensibles, como el abastecimiento de alimentos, la infraestructura, la salud, los recursos hídricos, los sistemas costeros, los ecosistemas, los ciclos biogeoquímicos mundiales, los mantos de hielo, o los modos de circulación oceánica y atmosférica. {Recuadro “Vulnerabilidades clave y Artículo 2 de la CMCC”, Tema 5}

Los ‘cinco aspectos preocupantes’ señalados en el TIE siguen constituyendo un marco viable para el estudio de las vulnerabilidades clave. En el presente trabajo, esos ‘aspectos’ se consideran más preocupantes que en el TIE. Muchos de los riesgos se identifican aquí con un grado de confianza más alto. Algunos serán mayores, según las proyecciones, o se harán presentes con aumentos menores de la temperatura. La relación entre los impactos (el fundamento de los “aspectos preocupantes” del TIE) y la vulnerabilidad (incluida la capacidad de adaptarse a los impactos) se conoce ahora con mayor detalle. {5.2}

Ello se debe a una identificación más precisa de las circunstancias que hacen especialmente vulnerables a los sistemas, sectores y regiones, y a una evidencia creciente del riesgo de impactos de gran magnitud en escalas de tiempo multiseculares. {5.2}

  • Riesgos que amenazan a sistemas únicos y amenazados. Hay una mayor y más clara evidencia de que han podido observarse impactos del cambio climático sobre sistemas únicos y vulnerables (como las comunidades y ecosistemas polares y de alta montaña), cuyo carácter negativo aumenta con la temperatura. Las proyecciones indican, con un grado de confianza mayor que en el TIE, un mayor riesgo de extinción de especies y de daños a los arrecifes de coral a medida que aumente la temperatura. Con un grado de confianza medio, en torno al 20-30% de las especies vegetales y animales evaluadas hasta la fecha estarían sujetas probablemente a un mayor riesgo de extinción si el aumento del promedio mundial de temperatura excediese de 1,5-2,5°C por encima de los niveles de 1980-1999. Hay un grado de confianza mayor en que un aumento de 1-2ºC de la temperatura media mundial respecto de los niveles de 1990 (aproximadamente 1,5-2,5ºC respecto de la era preindustrial) entrañaría importantes riesgos para nume- rosos sistemas únicos y amenazados y, en particular, para numerosas regiones de rica biodiversidad. Los corales son vulnerables al estrés térmico y su capacidad adaptativa es baja. Según las proyecciones, un aumento de la temperatura del mar en superficie de aproximadamente 1-3ºC acrecentaría la frecuencia de casos de decoloración de corales y la mortalidad de estos en gran escala, a menos que intervenga una adaptación térmica o aclimatación de esas especies. Las proyecciones indican también una mayor vulnerabilidad de las comunidades indígenas de la region ártica y de las comunidades que habitan en islas pequeñas. {5.2}
  • Riesgos de fenómenos meteorológicos extremos. Las respuestas a ciertos fenómenos extremos recientes revelan un nivel de vulnerabilidad mayor que el señalado en el TIE. Ha aumentado el grado de confianza en que aumentarán las sequías, las olas de calor y las crecidas, así como sus impactos adversos. {5.2}
  • Distribución de impactos y de vulnerabilidades. Existen marcadas diferencias entre regiones, y las de economía más débil suelen ser las más vulnerables al cambio climático. Aumenta la evidencia de que se agravará la vulnerabilidad de determinados grupos, como los menesterosos y los ancianos, no solo en los países en desarrollo sino también en los desarrollados. Además, hay cada vez más evidencia de que en las áreas de baja latitud y menos desarrolladas el riesgo suele ser menor, como sucede en las áreas secas y en los grandes deltas. {5.2}
  • Impactos totalizados. Los beneficios netos iniciales del cambio climático en términos de mercado serían máximos para un nivel de calentamiento menor que en los resultados del TIE, mientras que los daños serían mayores para magnitudes de calentamiento superiores. Según las proyecciones, el costo neto de los impactos de un mayor calentamiento aumentaría con el tiempo. {5.2}
  • Riesgos de singularidades de gran escala. Con un grado de confianza alto, un calentamiento mundial a lo largo de varios siglos implicaría una contribución de la dilatación térmica al aumento del nivel del mar que sería de una magnitud mucho mayor que la observada durante el siglo XX, y conllevaría la pérdida de extensiones costeras y otros impactos concomitantes. En comparación con el TIE, se aprecia más claramente que el riesgo de que los mantos de hielo de Groenlandia y, posiblemente, de la región antártica contribuyan adicionalmente al aumento del nivel del mar podría ser mayor de lo indicado por los modelos de mantos de hielo y podría producirse a escalas seculares. Ello se debe a que los procesos dinámicos de hielo constatados en observaciones recientes, aunque no incluidos en los modelos de mantos de hielo contemplados en CIE, podrían acelerar la pérdida de hielo. {5.2}

Hay un grado de confianza alto en que ni la adaptación ni la mitigación conseguirán evitar, por sí solas, todos los impactos del cambio climático; pueden, sin embargo, complementarse entre sí y, conjuntamente, reducir de manera notable los riesgos de cambio climático. {5.3}

La adaptación es necesaria a corto y largo plazo para hacer frente a los impactos del calentamiento, incluso con los escenarios de estabilización más prudentes utilizados. Hay obstáculos, límites y costos cuya naturaleza, sin embargo, no se conoce en detalle. A largo plazo, un cambio climático sin medidas de mitigación superaría probablemente la capacidad de adaptación de los sistemas naturales, gestionados y humanos. Las fechas en que podrían alcanzarse esos límites variarán según los sectores y las regiones. Una adopción temprana de medidas de mitigación rompería la dependencia de las infraestructuras de utilización intensiva de carbono y reduciría el cambio climático y las consiguientes necesidades de adaptación. {5.2, 5.3}

Muchos de los impactos pueden ser reducidos, retardados o evitados mediante medidas de mitigación. Los esfuerzos e inversiones en mitigación de los próximos dos o tres decenios determinarán en gran medida las oportunidades de alcanzar unos niveles de estabilización inferiores. El retardo en la reducción de emisiones reducirá notablemente esas oportunidades, e incrementará el riesgo de agravamiento de las repercusiones del cambio climático. {5.3, 5.4, 5.7}

A fin de estabilizar la concentración de GEI en la atmósfera, las emisiones tendrían que alcanzar un nivel máximo y disminuir subsiguientemente. Cuanto más bajo sea el nivel de estabilización, más rápidamente se materializará esa tendencia.[20] {5.4}

En la Tabla RRP.6 y en la Figura RRP.11 se resumen los niveles de emisión necesarios para diferentes grupos de concentraciones de estabilización, así como el calentamiento mundial resultante en condiciones de equilibrio y el aumento del nivel del mar a largo plazo por efecto únicamente de la dilatación térmica.[21] La cronología y el nivel de mitigación necesarios para alcanzar un nivel de estabilización de temperaturas dado acaecen más temprano, y son más restrictivos cuando la sensibilidad climática es elevada. {5.4, 5.7}

Tabla RRP.6. Características de los escenarios de estabilización posteriores al TIE y promedio mundial de temperatura resultante en condiciones de equilibrio a largo plazo, y aumento del nivel del mar debido únicamente a la dilatación térmica.a {Tabla 5.1}

Categoría Concentración de CO2 en la fecha de estabilización (2005: 379 ppm) b Concentración de CO2-equivalente en la fecha de estabilización, incluidos los GEI y aerosoles (2005: 375 ppm) b Año del nivel máximo de emisiones de CO2 a, c Variación de las emisiones mundiales de CO2 en 2050 (porcentaje del nivel de emisiones en 2000) a, c Aumento del promedio mundial de temperatura por encima de los niveles preindustriales en equilibrio, con base en una “estimación óptima” de la sensibilidad climática d,e Promedio mundial del aumento del nivel del mar por encima de los niveles preindustriales en condiciones de equilibrio por efecto únicamente de la dilatación térmica f Número de escenarios examinados 
 ppm ppm Año Porcentaje °C metros   
350 – 400 445 – 490 2000 – 2015 -85 a -50 2,0 – 2,4 0,4 – 1,4 
II 400 – 440 490 – 535 2000 – 2020 -60 a -30 2,4 – 2,8 0,5 – 1,7 18 
III 440 – 485 535 – 590 2010 – 2030 -30 a +5 2,8 – 3,2 0,6 – 1,9 21 
IV 485 – 570 590 – 710 2020 – 2060 +10 a +60 3,2 – 4,0 0,6 – 2,4 118 
570 – 660 710 – 855 2050 – 2080 +25 a +85 4,0 – 4,9 0,8 – 2,9 
VI 660 – 790 855 – 1130 2060 – 2090 +90 a +140 4,9 – 6,1 1,0 – 3,7 

Notas:

a) En los estudios de mitigación aquí examinados, el nivel de reducción de emisiones necesario para alcanzar un nivel de estabilización dado podría estar subestimado debido a la ausencia de retroefectos del ciclo de carbono (véase también el Tema 2).

b) Las concentraciones de CO2 en la atmósfera se cifraron en 379 ppm en 2005. La estimación óptima de la concentración total de CO2-eq en 2005 para todos los GEI de larga permanencia es de aproximadamente 455 ppm, mientras que el valor correspondiente, incluido el efecto neto de todos los agentes de forzamiento antropógeno, es de 375 ppm de CO2-eq.

c) Los intervalos de valores corresponden a los percentilos 15 a 85 de la distribución de escenarios posteriores al TIE. Se indican las emisiones de CO2 a fin de poder comparar los escenarios multigás con los escenarios de tan solo CO2 (véase la Figura RRP.3).

d) La estimación óptima de la sensibilidad climática es de 3°C.

e) Obsérvese que el promedio mundial de temperatura en equilibrio es diferente del esperado en la fecha de estabilización de las concentraciones de GEI, debido a la inercia del sistema climático. Para la mayoría de escenarios examinados, la estabilización de las concentraciones de GEI se alcanza entre 2100 y 2150 (véase también la Nota 21 de pie de página).

f) El aumento del nivel del mar en equilibrio refleja únicamente los efectos de la dilatación térmica, y el nivel de equilibrio no se alcanza durante como mínimo varios siglos. Estos valores han sido estimados mediante modelos del clima relativamente simples (un MCGAO de baja resolución y varios MCIT con base en una estimación óptima de 3°C de sensibilidad climática), y no incluyen la aportación proveniente de la fusión de los mantos de hielo, glaciares y casquetes de hielo. Según las proyecciones, la dilatación térmica a largo plazo dará lugar a un aumento de entre 0,2 y 0,6 m por grado Celsius de calentamiento promedio mundial en exceso de los niveles preindustriales. (MCGAO: Modelo de Circulación General Atmósfera-Océano; MCIT: Modelo de Complejidad Intermedia del Sistema Tierra).

Emisiones de CO2 y aumento de la temperatura en equilibrio para una serie de niveles de estabilización

Figura RRP.11

Figura RRP.11. Emisiones mundiales de CO2 para el período 1940-2000 e intervalos de valores de emisiones para las categorías de escenarios de estabilización que abarcan desde 2000 hasta 2100 (gráfica izquierda); y la correspondiente relación entre el objetivo de estabilización y el probable promedio mundial del aumento de temperatura en condiciones de equilibrio en exceso de los niveles preindustriales (gráfica derecha). La evolución hasta el punto de equilibrio puede durar varios siglos, especialmente en escenarios con niveles de estabilización más altos. Las áreas de color representan los escenarios de estabilización agrupados en función de diferentes objetivos (categorías de estabilización I a VI). En la gráfica derecha se indican los valores del promedio mundial de temperatura respecto de los niveles preindustriales, con base en: i) una sensibilidad climática de 3°C según la “estimación óptima” (línea negra central de la región sombreada), ii) una cota superior del intervalo probable de sensibilidades climáticas de 4,5ºC (línea roja del contorno superior de la región sombreada), iii) una cota inferior del intervalo probable de sensibilidades climáticas de 2°C (línea azul inferior de la región sombreada). Las líneas negras de trazos de la gráfica izquierda representan el intervalo de emisiones contemplado en los escenarios de referencia recientes publicados desde el IEEE (2000). Los intervalos de emisiones de los escenarios de estabilización abarcan escenarios de solo CO2 y multigás, y se corresponden con el percentilo 10-90 de la distribución total de escenarios. Nota: En la mayoría de los modelos, las emisiones de CO2 no incluyen las procedentes de la descomposición de la biomasa que queda sobre el suelo tras la tala y desforestación, ni de los incendios de turba o de los suelos turbosos drenados. {Figura 5.1}

El aumento del nivel del mar por efecto del calentamiento es inevitable. La dilatación térmica proseguiría durante muchos siglos una vez estabilizadas las concentraciones de GEI para todos los niveles de estabilización examinados, dando lugar a un aumento del nivel del mar mucho mayor del proyectado para el siglo XXI. La pérdida del manto de hielo de Groenlandia podría contribuir en varios metros, más de lo aportado por la dilatación térmica, si durante varios siglos se mantuviese un nivel de calentamiento superior a entre 1,9 y 4,6ºC respecto del nivel preindustrial. La gran magnitud de las escalas de tiempo que conlleva la dilatación térmica y la respuesta del manto de hielo al calentamiento implican que la estabilización de las concentraciones de GEI en niveles actuales o superiores no estabilizaría el nivel del mar durante muchos siglos. {5.3, 5.4}

Hay un nivel de coincidencia alto y abundante evidencia de que pueden alcanzarse todos los niveles de estabilización estudiados si se implementa una serie de tecnologías actualmente disponibles o que previsiblemente se comercializarán en los próximos decenios, suponiendo que haya incentivos apropiados y eficaces para su desarrollo, adquisición, implantación y difusión, y para hacer frente a los obstáculos correspondientes. {5.5}

Todos los escenarios de estabilización estudiados indican que entre un 60% y un 80% de las reducciones provendría del abastecimiento y utilización de energía y de los procesos industriales, y que la eficiencia energética desempeñaría un papel esencial en numerosos escenarios. La inclusión de opciones de mitigación respecto al uso de la tierra y a la silvicultura, con o sin CO2, confiere una mayor flexibilidad y una mejor relación eficacia/costo. Unos niveles de estabilización bajos conllevan un desembolso de inversiones en breve plazo y una difusión y comercialización mucho más rápidas de tecnologías de bajas emisiones avanzadas. {5.5}

De no mediar unos flujos de inversión sustanciales y una eficaz transferencia de tecnologías, podría ser difícil conseguir un nivel apreciable de reducción de las emisiones. El impulso a la financiación de los costos incrementales de las tecnologías de bajo contenido de carbono sería un elemento importante. {5.5}

Los costos macroeconómicos de la mitigación suelen aumentar a la par que el carácter restrictivo del objetivo de estabilización (Tabla RRP.7). Para determinados países y sectores, los costos variarán considerablemente respecto del promedio mundial.[22] {5.6}

En 2050, el promedio de los costos macroeconómicos mundiales de la mitigación necesaria para conseguir la estabilización entre 710 y 445 ppm de CO2-eq representa entre un aumento del 1% y una disminución del 5,5% del PIB mundial (Tabla RRP.7). Estos valores corresponden a una ralentización promedia del crecimiento mundial anual del PIB de menos de 0,12 puntos porcentuales. {5.6}

Tabla RRP.7. Costos macroeconómicos mundiales estimados en 2030 y en 2050. Valores basados en las trayectorias de más bajo costo seguidas para alcanzar diferentes niveles de estabilización a largo plazo. {Tabla 5.2}

Niveles de estabilización (ppm de CO2-eq) Mediana de reducción del PIB a) (%) Intervalo de valores de reducción del PIB b) (%) Reducción de las tasas de crecimiento promedias anuales del PIB (en puntos porcentuales) c, e) 
 2030 2050 2030 2050 2030 2050 
445 – 535 d) No disponible < 3 < 5,5 < 0,12 < 0,12 
535 – 590 0,6 1,3 entre 0,2 y 2,5 entre ligeramente negativo y 4 < 0,1 < 0,1 
590 – 710 0,2 0,5 entre -0,6 y 1,2 entre -1 y 2 < 0,06 < 0,05 

Notas:

Los valores indicados en esta tabla corresponden al conjunto de publicaciones científicas respecto de todos los valores de referencia y escenarios de mitigación que arrojan valores numéricos del PIB.

a) PIB mundial basado en los tipos de cambio del mercado.

b) Se indican, cuando procede, los percentilos 10 y 90 de los datos analizados. Los valores negativos indican un aumento del PIB. En la primera hilera (445-535 ppm de CO2-eq) se indica la estimación de la cota superior según los artículos publicados únicamente.

c) La reducción de la tasa de crecimiento anual se calcula en base al promedio de la reducción que, durante el período estudiado, daría lugar a la disminución del PIB señalada de aquí a 2030 y a 2050, respectivamente.

d) El número de estudios es relativamente pequeño y sus valores de referencia suelen ser bajos. Unos valores de referencia altos suelen entrañar un costo más elevado.

e) Estos valores corresponden a la estimación más alta de la reducción del PIB, columna 3.

La respuesta al cambio climático conlleva a un proceso de gestión de riesgos iterativo que abarca tanto medidas de adaptación como de mitigación y que tiene presentes los daños, los cobeneficios, la sostenibilidad, la equidad y las actitudes ante el riesgo en relación con el cambio climático. {5.1}

Es muy probable que los impactos del cambio climático impongan un costo anual neto que aumente a medida que lo hacen las temperaturas mundiales. Las estimaciones del costo social del carbono en 2005 revisadas por homólogos[23] arrojan un promedio de USD12 por tonelada de CO2, pero para un total de 100 estimaciones el intervalo de valores es amplio (-$3 a $95/tCO2). Ello se debe en gran parte a los diferentes supuestos respecto de la sensibilidad climática, los retardos de respuesta, los análisis de riesgo y de equidad, los impactos económicos y no económicos, la inclusión de pérdidas potencialmente catastróficas, y los tipos de descuento. Las estimaciones del costo totalizado encubren importantes diferencias en los impactos según el sector, región o población, y muy probablemente subestiman el costo de los daños, ya que no pueden incluir un gran número de impactos no cuantificables. {5.7}

Un número limitado de resultados analíticos iniciales obtenidos de análisis integrados de los costos y beneficios de la mitigación indican que son aproximadamente equiparables en magnitud, aunque no permiten todavía determinar inequívocamente una trayectoria de emisiones o un nivel de estabilización en que los beneficios superen los costos. {5.7}

La sensibilidad climática es una incertidumbre clave en los escenarios de mitigación para determinados niveles de temperatura. {5.4}

La determinación de una u otra escala y cronología de mitigación respecto de los GEI conlleva a un análisis comparativo entre los costos económicos que entrañaría una reducción más rápida de las emisiones en la actualidad y los riesgos climáticos que a medio y largo plazo acarrearía el retardo. {5.7}

  1. ^  Las vulnerabilidades clave pueden identificarse con base en ciertos criterios propuestos en diversos artículos de investigación, como la magnitud, la cronología, la persistencia/reversibilidad, el potencial de adaptación, ciertos aspectos relacionados con la distribución, la verosimilitud y la “importancia” de los impactos.
  2. ^  Para la categoría de escenarios de mitigación más optimistas, las emisiones tendrían que alcanzar su nivel máximo no más tarde de 2015, y para los más pesimistas no más tarde de 2090 (véase la Tabla RRP.6). Otros escenarios basados en trayectorias de emisiones distintas, presentan diferencias sustanciales en cuanto a la rapidez del cambio climático mundial.
  3. ^  El CIE no ofrece estimaciones de la evolución de la temperatura durante el presente siglo con los escenarios de estabilización. Para la mayoría de los niveles de estabilización, el promedio de la temperatura mundial alcanza el nivel de equilibrio al cabo de varios siglos. Con escenarios de estabilización mucho más optimistas (categorías I y II, Figura RRP.11), la temperatura en equilibrio podría alcanzarse antes.
  4. ^  Véase la Nota de pie de página 17, que contiene más información sobre las estimaciones de costos y los supuestos subyacentes a los modelos.
  5. ^  Costos económicos netos de los daños causados por el cambio climático, totalizados para el conjunto del planeta y ajustados respecto del año en cuestión.